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The autocorrelation functions and corresponding relaxation times obtained from the focward 
depolarized quasi-elastic light scattering experiment are exhibited for two qu ite similar models of flexible 
polymer chains in solution. A very small change in the chain dynamics is fou nd to be sufficient to change 
the relaxation time from a relatively short time independent of chain length, with an autocorrelation 
function suggestive of an unweighted sum of contributions from all the relaxation times in the spectrum 
of chain motion, to a long time with an autocorrelation function identical with that for the end-to-end 
vector, strongly dependent upon chain length and dominated by the longest relaxation time in the 
spectrum. These results raise the question whether widely-used models in which information about 
short-range chain structure and motiori is deliberately omitted can be expected to be appropriate for the 
interpretation of depolarized scattering experiments. 
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I N T R O D U C T I O N  

During the past decade, quasi-elastic light scattering has 
become an important experimental means for studying 
the dynamics of macromolecules in solution 1. It may be 
used to determine translational and rotational diffusion 
constants and to provide information about 
intramolecular motions. In particular, the forward 
depolarized scattering experiment is sensitive to the entire 
frequency spectrum of internal motions of high-polymer 
chains. Since this technique senses fluctuations in 
molecular polarizability, a model of chain dynamics is 
needed to relate experimental results to molecular 
parameters. 

The dynamical behaviour of flexible polymer chains 
has been the subject of many studies for the last few 
decades. The basis for most of this work has been the 
familiar Rouse Zimm model 2'3. In this model, a polymer 
chain is represented by a number of statistical segments, 
each corresponding to a subchain of the polymer 
composed of perhaps 1(~50 monomer units. Each 
statistical segment of the chain is modelled by a bead and 
spring, the former a massless sphere interacting with a 
continuum solvent via Stokes' law, the latter a Hooke's 
law spring of zero equilibrium length. Thus information 
about motions of shorter range than one statistical 
segment is deliberately sacrificed to produce a tractable 
model for describing slower, longer-range motions. This 
model, with various modifications, has achieved 
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considerable success in describing the long-range motions 
of polymers which can be observed in dielectric, neutron 
scattering, and viscoelastic mechanical 
measurements 4-1 o. 

To date, most of the theoretical treatments of 
depolarized scattering from polymer chains have 
employed a modification of the Rouse-Zimm model 
proposed by Ono and Okano ~ 1. In order to use a Rouse- 
Zimm model for this purpose, it is necessary to postulate a 
polarizability tensor associated with each statistical 
segment. For a real molecule, of course, the components of 
the segment polarizability tensor will depend upon the 
conformations of the chemical units which are idealized 
by a 'segment'. Ono and Okano used the representation of 
a segment polarizability tensor originally proposed by 
Zimm 3, i.e., a tensor cylindrically symmetric about the 
direction of the instantaneous segment extension, with an 
anisotropy proportional to the extension. Their 
calculations predict that the frequency spectrum obtained 
from the forward depolarized scattering from a flexible 
polymer chain should consist of a sum of uniformly 
weighted Lorentzians. Norisuye and Yu 12 subsequently 
argued that this result should be true over a wide range of 
chain models with differing chain dynamics. Experimental 
data obtained by Han and Yu 13 on isotactic polystyrene 
in tetrahydrofuran appear to fit an unweighted sum of 
Lorentzians. However, the depolarized scattering 
experiments of Bauer, Brauman and Pecora t4 on atactic 
polystyrene in CCI 4 yield spectra dominated by a single 
long relaxation time, corresponding to a frequency 
spectrum consisting of a single, low-frequency 
Lorentzian. Moro and Pecora ~5 then showed that the 
dynamical wormlike coil model of Harris and Hearst ~6, 
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which includes local chain stiffness, yields relaxation 
spectra dominated by the long relaxation times. However, 
their theoretical results were difficult to compare directly 
with experiment. Thus it is far from clear what chain 
dynamics models are appropriate for interpreting 
depolarized scattering experiments, and to what extent 
theoretical calculations of the depolarized scattering from 
flexible polymer chains are model dependent. 

In this paper we report a study of the effects of details of 
chain dynamics upon the results of the forward 
depolarized scattering experiment. We exhibit the 
relaxation behaviour of two simple dynamic models of 
flexible chains in solution, with very similar local move 
rules. The relaxation of the end-to-end vector, taken as 
reflecting the longest-range, slowest motions of the chains, 
in both these models is similar to that of the Rouse-Zimm 
model in the appropriate (free-draining) limit. However, 
the relaxation of the component of the chain 
polarizability tensor sampled by the depolarized 
scattering experiment is drastically different in the two 
models, the relaxation time being proportional to the 
square of chain contour length in one case and 
independent of chain contour length in the other. Thus the 
question is r~sed whether models which deliberately 
sacrifice information about short-range chain structure 
and motion in order to gain tractability for long-range 
behaviour can be expected to be appropriate for the 
interpretation of depolarized scattering experiments. 

MODEL 

We model a flexible polymer chain in solution by a 
linearly connected set of N - 1  segments, each of unit 
length, which join the centres of N beads. The angle 
between two adjacent segments along the chain is 
arbitrary and may assume any value resulting from 
application of the move rules. Further, in this study the 
'beads' are taken to be of zero diameter and serve only as a 
convenience for describing the point of connection of two 
adjacent segments along the chain. Brownian motion of 
the chain resulting from random collisions with the 
solvent is simulated by choosing a bead at random and 
then moving just this bead to a new position, leaving the 
other beads unmoved. This process, which we shall call a 
bead cycle, is taken to represent I/N units of time (since 
the rate at which a real polymer chain collides with 
solvent is presumably proportional to the length of the 
chain). Let the beads be numbered along the chain from 1 
to N and the segments from 1 to N -  1. Then if bead i is 
selected and i is not 1 or N, bead i is rotated through an 
angle ¢ about the line joining beads i -  1 and i+  1. When 
an end bead (i = 1 or N) is chosen, a 'phantom' bead 0 or 
N + 1 is created a unit distance from the chosen end bead in 
a randomly chosen direction, the algorithm for moving a 
non-end bead is carried out, and the 'phantom' bead is 
discarded. For one of the two models of chain motion 
which we have employed here, which we shall call the 
Random Rotation (RR) model, at the start of each bead 
cycle a value of ~ is chosen at random in the range { - zt,rc}; 
for the other, which we shall call the Fixed Rotation (FR) 
model, ~ is always ~. Neither of these models is new. 
Orwoll and Stockmayer ~v have shown analytically that 
the long-time relaxation behaviour of the FR model is 
identical with that of the free-draining Rouse-Zimm 
model, and Stockmayer, Gobush and Norvich a8 have 
shown the same thing for a class of bead-stick models 
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which includes both the RR and the FR models as special 
cases. Thus the relaxation of the end-to-end vector is 
expected to be the same in both models. Our concern in 
the present paper is with the relaxation of the chain 
polarizability tensor. 

We associate with each segment a segment 
polarizability tensor ~i which is cylindrically symmetric 
about the segment and is the same for each segment. Let 
~i,~ be the component of =~ parallel to the segment and ~i,r~ 
the component perpendicular to the segment, and let the 
coordinates of the i-th bead in a laboratory-fixed coor- 
dinate system by {Xi, Y~,Zi}. Then the yz-term %z of ~i is 
givenl,X 5 by: 

= (%pa -- %p~)sin 0~cos 0isin q~i, (1) 

where 0~ and ~o~ are the usual laboratory-fixed polar 
coordinates for the orientation of segment i. The chain 
polarizability tensor ~ is taken x9 to be the sum of the 
individual segment polarizability tensors =~. Then the yz- 
term ~z of the chain polarizability tensor is given by: 

N - I  

~z = Y" ~,,yz (2) 
i = 1  

In the forward depolarized scattering experiment, let us 
suppose that the incident light propagates along the x- 
axis, linearly polarized with its E-vector along the y-axis, 
and that we observe forward-scattered light with E-vector 
along the z-axis. Then the fluctuations in the intensity 
of the observed scattered light are proportional to the 
fluctuations in %=, and we can obtain the relaxation 
behaviour of ~.= from the autocorrelation function 
p(%z,~z,t)=(~yz(6)%~(t))/(~y~2), where the angle brac- 
kets denote equilibrium ensemble averages. The power 
spectrum of the scattered light is proportional to the 
Fourier transform of the autocorrelation function. 

RESULTS 

Random rotation model 
Relaxation of the RR model was studied by computer 

simulation. Random starting configurations of chains of 
9, 15, 33 and 63 beads were generated, then moved as 
described in the preceding section for large numbers of 
bead cycles corresponding to several hundred times the 
relaxation time for the end-to-end vector i. At intervals the 
values of %= and I were sampled and products %=(0)%=(t) 
and l(0).l(t) formed and added into running sums, from 
which estimates of the equilibrium ensemble averages 
(%,(0)%,(t)) and (l(0)'l(t)) were formed. Finally, the 
autocorrelation functions p(%=,%zt) = (%=(0)%z(t))/(%= 2) 
and pO,I,t)= (l(O)'l(t) ) /(l 2) were calculated. 

Semilogarithmic plots of the autocorrelation functions 
obtained for I vs. t are shown in Figure 1. It will be seen 
that after an initial rapid decay, they each appear to 
approach linear behaviour suggestive of a unique longest 
relaxation time. We have therefore extracted two 
measures of relaxation time from each function: A 
relaxation time "1~ I for I itself, defined by pOJ,* l) = e- 1, and a 
'longest' relaxation time z 1 obtained by fitting the 
autocorrelation function to the form p = a e x p ( - t / z ~ )  in 
the region p <0.6, beyond 9: ~nitial rapid decay. The 
resulting values of q and o i are given in Table I, in units of 
N 3 bead cycles. 

In order to compare the relaxation behaviour of the RR 
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model with that of the free-draining Rouse-Zimm model, 
we can make use of the dimensionless ratio Dr1~(12), 
where D is the translational diffusion constant of the 
centre of mass of the chain. For  the RR model (I 2) is just 
N - 1 and D can easily be shown from the move rules to be 
(1/6)N- 2 (bead cycles)- 1, or N/6 (N 3 bead cycles)- t. Thus 
the ratio Dzx/(I 2) has the value z tN / [6 (N-1) ] .  For the 
free draining Rouse-Zimm model of N beads and N -  1 
springs, the ratio has the value 
csc2[zt/(2N)]/[12N(N- 1)]. Values of this expression and 
of z lN/[6(N - 1)] are shown in Table 1; they may be seen 
to be in reasonable agreement. 

Semilogarithmic plots of autocorrelation functions for 
%z in the RR model are shown in Figure 2. It will be seen 
that they decay in a time approximately proportional to N 
bead cycles, and therefore independent of chain contour 
length. Relaxation times ~=, defined by p(%z,%z,Z~) = e-  1, 
are given in Table 1. 

Fixed rotation model 
In the FR model, the angle through which a selected 

bead is rotated about the line between its neighbouring 
beads along the chain is always n, rather than being 
randomly chosen each move. When bead i is selected, this 
'rotation' merely exchanges the vector from bead i -  1 to 
bead i with the vector from bead i to bead i + 1. This model 
has been treated previously ~ 7,20; the relaxation of the end- 
to-end vector is very similar to that of the free-draining 
Rouse-Zimm model of N beads and N - 1  springs. In 
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both the FR model and the free-draining Rouse-Zimm 
model, the autocorrelation function p(I,l,t) is given 2°'21 
by: 

2 u.2) 2[ kn'~ . , 
p(i,l,t)=N(/~ - 1) k__2.,lcot k ~ ) e x p ( - t / z k ,  (3) 

where the prime on the summation means that it is taken 
over odd values of k. It is clear from equation (3) that the 
relaxation of ! is dominated by the longest relaxation time 
r 1. The relaxation times z k are given in terms of D by 
Zk(FR) = ( - 3 N 2 DIn { 1 - (4/U)sin 2 [kn/(2 N)] }) - 1 for t he 
FR model, and by Zk(ROuse- 
Zimm)={lZND sinZ[kg/(ZN)]} -1 for the free-draining 
Rouse-Zimm model. It will be seen that the two 
expressions give very similar values of Zk when k/N is 
small or when N is large. 

By an extension of the method employed in ref. 20, we 
can also obtain the autocorrelation function for ~r= in the 
FR model. In particular, we can show that for this model, 
the relaxation of ~r= is identical with that of I. Let the chain 
configuration be represented by a set of vectors 
01,02 . . . . .  ON- X, where o~ is the vector from bead i to bead 
i + 1, and let us look at the effect of the FR move rules 
upon a particular o~. Most bead cycles will not affect it, 
since they will call for an exchange elsewhere along the 
chain, but selection of bead i or bead i + 1 will cause o~ to 
exchange positions with o i_ 1 or o~+ 1, respectively, thus 
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Figure I Semilogarithmic plot of autocorrelation functions p(I, I, 
t) of the end-to-end vector I vs. t ime in units of /V 3 bead cycles, 
for Random Rotation chains of N beads. The vertical bars extend 
upward and downward one sample deviation. (O)  N = 9; (I-I) N 
= 1 5 ; ( A )  N = 3 3 ; ( ~ )  N = 6 3  
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Figure2 Semilogarithmic plot of autocorrelation functions 
p(C~yz, C~Fz, t) of the yz- component of the chain polarizability 
tensor ~ vs. time in units of N bead cycles, for Random Rotation 
chains of N beads. The vertical bars extend upward and downward 
one sample standard deviation. Symbols as Figure I 

Table I Values of q / N  3, ~1/N3, Dzl/(P), [ csc2 ( - ~ / N ) ] / [ 1 2 N ( N -  1 )], and ~=/N, where q, ~1, and T= are the relaxation time for the end-to- 
and vector I, the limiting long-time relaxation time, and the relaxation time for the yz-component of the chain polarizability tensor ,,, 
respectively, for Free Rotation model chains of N beads, in units of bead cycles. D is the translational diffusion constant of the centre of mass 
of the chain. The values of z and z= were estimated by eye from the autocorrelation functions p(I, I, t) and p(c¢ z, =vz, t) in Figure 1 to satisfy 
p(I, I, Zl)=p(=y z, =yz, zz) =e-~. The values of t l  were obtained by least-squares fits of p(I, I, t) to a e x p ( - t / z  1) i~ the region p < 0.6. The values 
in parentheses are sample standard deviations in the t 's inferred from the sample standard deviations in the p's 

N rl/N 3 rl/N3 Drl/( I  2) csc2(½~/N)/[12/V(N--1)] rc~/N 

9 0.16 (0.01) 0.1882 (0.0048) 0.035 0.038 1.1 (0.1) 
15 0.15 (0.01) 0.2062 (0.0056) 0.037 0.036 1.3 (0.2) 
33 0.15 (0.01) 0.1502 (0.0029) 0.026 0.035 1.2 (0.2) 
63 0.18 (0.01) 0.2233 (0.0057) 0.038 0.034 1.0 (0.2) 

POLYMER, 1983, Vol 24, April 385 



Quasi-elastic light scattering data for flexible chains." D. E. 

moving one position along the chain in one direction or 
the other. Eventually it will migrate to one end of the 
chain, where the subsequent selection of the 
corresponding end bead may cause it to be exchanged 
with a new, randomly chosen ¢. In the meantime, it 
executes a well-defined random walk on a one- 
dimensional lattice of N - 1  sites, with absorbing 
boundaries at both ends. The walk is characterized by the 
probability pq(t) that a vector which starts at position i at 
time 0 will be in position j after exactly t bead cycles. 

Now consider a function F of chain coordinates of the 
form: 

F = Z ,  f ,  (4) 

where fi =f(¢',). The function f may be a vector or a scalar, 
and must have ( f ) = 0 ;  ( f i ~ ) = 6 i j ( f 2 ) .  We seek the 
autocorrelation function for F: p(F,F,t)=((F(O).F(t))- 
(F)2)/((F 2) -(F)2). .First  we note the obvious: ( F )  =0; 
(F z) =(N - l ) ( f 2 ) .  Now we need: 

( F(O)'F(t) ) = ~,q(f~(O)f j(t) ) (5) 

Consider the right-hand side of equation (5). Since by 
hypothesis the o's, and therefore the f ' s  are uncorrelated, 
each term (fi(0)fj(t)) will just be equal to 
(f~(0)) ' ( f j ( t ))  =0  except when the vector which was at 
position i at time 0 migrates to position j in time t; in this 
case the value of the term is ( f 2 ) .  We therefore have: 

( F(O)'F(t) ) = ( f  2) ~qpij(t); 

p(F,F,t) = (N - 1) - 1 ~qpo~t). 
(6) 

Thus any function that can be written in the form of 
equation (4) with its associated constraints has the 
autocorrelation function given by equation (6). The form 
of the autocorrelation function depends upon the nature 
of Pifl), which is determined by the move rules, but does 
not depend upon what the function F is. 

Finally, we note that both I and ~r= can be so written; for 
the end-to-end vector we have f~=¢~ and for c% we have 
fi = (o(%)(¢(e=), where ey and e z are unit vectors in the 
positive y- and z-directions, respectively. It follows that 
the autocorrelation functions, and therefore the 
relaxation times, of ! and cry= are identical. Thus the 
relaxation of cry z in the FR model, in contrast to the RR 
model, is dominated by the longest relaxation time. 

CONCLUSION 

In summary, we have exhibited the relaxation behaviour 
of two freely jointed bead-stick models of flexible polymer 
chains. The two models are very similar, differing only in 
the details of their local moves. The relaxation of the end- 
to-end vector in both models is very similar to that shown 
by the freely draining Rouse-Zimm model. However, the 
two models give drastically different predictions for the 
relaxation of the chain polarizability tensor component 
sampled by the forward depolarized quasi-elastic light 
scattering experiment. For the version we have called the 
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Random Rotation model, relaxation of this component is 
relatively fast and independent of chain length, a result 
qualitatively similar to the predictions of the Ono-Okano  
result and the experimental data of Han and Yu. For the 
Fixed Rotation model, relaxation is identical with that of 
the end-to-end vector, and is therefore dominated by the 
longest relaxation time, in qualitative agreement with the 
experimental data of Bauer, Brauman and Pecora. It was 
pointed out long ago 18 that differences in short-range 
relaxation behaviour are to be expected for different bead- 
stick models with similar long-time relaxation behaviour. 
Our results offer a rather striking demonstration of these 
differences in the case of the chain polarizability tensor. 

In view of these results, it appears that the predictions of 
models in which short-range detail is deliberately 
suppressed, such as both these bead-stick models and, 
equally, the Rouse-Zimm bead-spring model, are not to 
be trusted for the relaxation of the chain polarizability 
tensor. Considerable insight into the details of its 
relaxation on a monomer-scale level appears to be needed 
for the construction of a model appropriate for the 
interpretation of the forward depolarized scattering 
experiment. This suggests that the experimental results 
may be non-trivially dependent upon the chemical 
structure of the chain monomer units. 
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